論文顯示區塊
論文名稱:以電磁推進機構設計與控制之三維精密定位平台
Design and Control of a 3-DOF Precision Positioner Utilizng Electromagnetic Mechanism
研究生:謝松佑 Sung-Yu Hsieh
指導教授:陳美勇 Mei-Yung Chen
    學位類別:碩士(Master)
    學校名稱:國立臺灣師範大學
    記錄編號:GN0694700422
系所名稱:機電科技研究所
畢業學年度:95
      語文別:中文
關鍵字:電磁力驅動器 Electro-magnetic Actuator
次微米級微步進定位平台 Sub-micro Positioner
撓性機構 Flexure Mechanism
全文說明:第一章
第二章
第三章
第四章
第五章
第六章
    論文頁數:78
摘要:本論文研究之目的是設計並實現一新型、長行程、三自由度運動的奈米級定位平台,此平台能夠整合並應用於原子力顯微鏡,來達成長行程與精密定位之需求。在本論文中,對於硬體架構、電磁致動器設計以及高效能的控制器設計都有完整介紹。本研究計畫即是基於本精密運動實驗室以前對於電磁驅動器研究之基礎,再結合撓性機構之設計,進行一創新型之次微米級微步進定位平台之研製作為本研究之主要課題。
本研究擬架構一電磁驅動式的次微米級微步進定位平台機構,引入機電整合(Mechatronics) 的設計概念,在設計與製造產品中,對於精密機械工程,電子控制以及系統思考三方面的協調合作設計,建立新型的次微米級微步進定位平台機構,輔以發展之PID控制理論,選用PID控制是歷史最悠久、生命力最強的基本控制方式,具有適應力強、原理簡單、強軔性好等優點,可以不必深究其模型結構,直接應用PID控制。
本論文所設計的平台在X與Y二維度之最大行程可達 ,且最高解析度為 ,平台整體尺度為 。平台主體係採用一體成型的XY二維撓性結構作為無乾摩擦力的引導機構;致動裝置採用三組類音圈馬達原理所設計之電磁致動器,利用直接驅動 軸向的排列方式,以達成三個自由度的運動。
This paper proposes a novel 3-DOFs positioner system with large travel ranges is presented, which can be integrated with atomic force microscope (AFM) for precise positioning. The design of the nanopositioner utilizes the monolithic parallel flexure mechanism with the built-in electromagnetic actuators and the fiber interferometers to achieve the 3-DOF motion. These reasons motivate us to design a new sub-micro positioner which drives by the electro-magnetic actuators to achieve the positioner for large-moving range and high-precision positioning performances. To improve the system response, we will design an embedded system which integrated sensor, driver and controller, all in one module.
Based on the above arguments, this project is designed to establish a sub-micro positioner which driven by 『mechatronics』 concept. The system can achieve rapid, high precision positioning by using some kind of specifically developed control laws. The works of this project is organized as follows. Then, due to the naturally stable behavior and parameter uncertainties in this system, an PID controller is proposed to guarantee the stabilities of all DOFs both in regulation and tracking.
    The concept of this system intends to achieve three goals: the first one is large traveling range within  . The second is precision positioning within  , and its size is as compact as  . In this system, totally there are three sub-systems composed of platform, sensor, and actuator. By discussing the magnetic force characteristics between permanent magnet (PM) and coil, the general model of this system with complete DOFs is derived and analyzed.
    論文目次: 摘要......................................................................Ⅰ
ABSTRCAT..........................................................Ⅱ
謝誌......................................................................Ⅲ
目錄......................................................................Ⅳ
圖目錄..................................................................Ⅶ
表目錄..................................................................Ⅹ
第一章 緒論..........................................................1
1.1前言..................................................................1
1.2文獻回顧..........................................................3
1.2.1平台機構之回顧...........................................3
1.2.2平台驅動器之回顧.......................................9
1.3研究動機與目的............................................12
1.4本論文之貢獻................................................13
1.5論文架構........................................................14
第二章 理論基礎................................................15
2.1電磁力原理....................................................15
2.2永久磁鐵 .......................................................18
2.3機械能轉換....................................................23
2.3.1功與應變能.................................................23
2.3.2彎曲力矩的應變能.....................................25
2.3.3卡氏定理.....................................................28
2.4渦電流原理....................................................28
第三章 系統組成設計與配置............................30
3.1設計流程規劃................................................30
3.2電磁式致動器................................................30
3.2.1音圈馬達.....................................................30
3.2.2電磁式致動器設計.....................................31
3.3撓性移動平台設計與分析............................34
3.3.1撓性結構.....................................................35
3.3.2 平板式撓性結構........................................39
3.3.3撓性結構主體設計.....................................45
3.4量測系統........................................................49
3.5定位平台整體架構........................................51
第四章 系統模型推導與控制器設計................53
4.1系統動態描述................................................53
4.2 PID控制系統架構.........................................58
4.2.1 Ziegler-Nichols調整演算法.........................61
4..2.2 Chien-Hrones-Reswick調整演算法...........62
4.2.3 Cohen-coon調整演算法.............................63
第五章 實驗結果與討論....................................64
5.1實驗設備........................................................64
5.1.1運動平台.....................................................64
5.1.2控制器介面.................................................65
5.1.3 渦電流感測器............................................69
5.2定點控制........................................................70
5.3連續步階定位控制........................................71
5.4正弦波運動控制............................................73
5.5圓形運動控制................................................76
第六章 結論........................................................77
參考文獻.............................................................78
    參考文獻:[1]  P. D. Atherton, Y. Xu. And M. McConnel, ” New X-Y Stage for Positioning and Scanning,” Proceedings of SPIE’s Annual Meeting, Aug. 1996, Denver, USA.
[2]  Y. Xu, P. D. Atherton, M. McConnel, and T. R. Hicks, “Desing and Characteristicvs of Nanometer Precision Mechanisms,” Proceedings of American Society For Precision Engineering Annual Meeting, 1996, USA.
[3]  D. Heuderson, D. Jensen and P. Piccirilli, “Recent advancements in Piezoelectric Stepping Motors,” Proceedings of American Society For Precision Engineering Annual Meeting, 1996, USA.
[4]  H. Isobe, T. Moriguchi and A. Kyusojin, “Development of Piezoelectric XYZ Positioning Device Using Impulsive Force,” 日本精密工學會誌, vol. 62, no. 4, 1996.
[5]  J. W. Ryu and D. G. Gweon, “High Precision X-Y-θ Micropositioning Stage Using Monolithic Flexure-Pivoted Linkages,” Proceedings of American Society For Precision Engineering Annual Meeting, 1996, USA.
[6]  Peter E. Tenzer and Ridha Ben Mrad, ” A Systematic Procedure for the Design of Piezoelectric Inchworm Precision,” in IEEE/ASME Trans. On Mechatronics, 2004.
[7] Jong-Youp Shim, and Dae-Gab Gweon, ”Piezo-driven metrological multiaxis nanopositioner,”Review of Scientific Intruments, American Institute of Physics,2001.
[8] 蔡嘉峰, ”Integrated Design and Control to Improve Robustness and Upgrade Positioning Precision on Planar Maglev System.”Master thesis. The National Taiwan University, Taiwan, R.O.C.,2002.
[9]  Products P-780, Physik Instrumente Product Catalog, 2005.
[10] D.L.Trumper, M.C.Weng, and R.J.Ritter, “Magnetic suspension and vibration control of beams for non-contact processing,” in Proc.IEEE CCA-CACSD ’99,pp. 551-557.,1999
[11] Shobhit Verma, Won-jong Kim, and Jie Gu, ”Six-Axis Nanopositioning Device With Precision Magnetic Levitation Technology” in IEEE/ASME Trans. On Mechatronics,  Vol .9, No 2, JUNE 2004.
[12] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and experiment of  a 3-DOF parallel micromechanism utilizing flexure hinges,” IEEE Trans. On Robotics and Automation, Vol. 19, No. 4, 2003.
[13] S. H. Change, C. E. Tseng, and H. C. Chien, “An ultra-precision XYZ piezo micropositioner Part I: Design and analysis,” IEEE Trans. On Ultrason., Ferroelect., Freq. Contr., Vol .46, No. 4, pp.897-905,Jul. 1999.
[14] 張昫揚, “Study in Long-range and Nanometer Positioning System” Master thesis. National Chung Hsing University, Taiwan, R.O.C.,2002.
[15] 井澤實編著、杜光宗編譯,「精密定位技術及其設計技術」,建宏出版社,2~7、26~33、217~329 頁, 中華民國八十五年七月初版。
[16] 內野研二著、許溢适編譯,「壓電/電歪致動器」,文笙書局股份有限公司,中華民國八十五年七月初版。
[17] U. Minoni and F. Docchio,“An Optical Self-Calibrating Technique for the Dynamic Characterization of PZT’s ” , IEEE Transaction on Instrumentation and Measurement, Vol.40 No.5, P.851~P.854, October 1991.
[18] Q. Chen, D.J. Yao, C.J. ‘CJ’ Kim, G.P. Carman,“Mesoscale actuator device:micro interlocking mechanism transfer to load”, Sensors and Actuators 73, P.30~P.36, 1999.
[19] T. IDOGAKI, H. KANAYAMA, N. OHYA, H. SUZUKI and T. HATTORI,“Characteristics of Piezoelectric Locomotive Mechanism for an In-Pipe Micro Inspection Machine ”, IEEE International Symposium on Micro Machine and Human Science, P.193~P.198, 1995.
[20] 劉永田、簡國華,「壓電元件與彈簧機構所構成之自走式高精度移動檯」,第十二屆全國自動化科技研討會,虎尾技術學院,中華民國九十年五月二十五、二十六日。
[21] J.M. Breguet, R. Clavel,“Stick and Slip Actuators:design﹐control﹐performances and applications”, IEEE International Symposium on Micro Machine and Human Science, P.89~P.95, 1998.
[22] 朱怡銘,「奈米級XYZ 三自由度為定位平台」,台灣大學機械工程學研究所碩士論文,中華民國八十九年七月。
[23] 曾俊耀,「壓電驅動精微定位機構設計」,台灣大學機械工程學研究所碩士論文,中華民國九十年七月。
[24] R. Yang, M. Jouaneh, R. Schweizert,“Design and characterization of a low-profile micro-positioning stage”, Precision Engineering 18:20–29, 1996.
[25] 葉賢基,「次奈米雷射測長與次奈米即時定位控制之研究」,清華大學物理研究所博士論文,中華民國八十七年六月。
[26] 謝士渠,「壓電致動器運用在XYΘZ 精密定位平台之設計與實驗」,彰化師範大學工業教育研究所碩士論文,中華民國九十年七月。
[27] 傅世澤,「奈米級微定位平台最佳化設計與分析」,中興大學機械工程學研究所碩士論文,中華民國九十年七月。
[28] 蔡奇陵,「六自由度超精密奈米定位平台研製」,台灣大學機械工程學研究所碩士論文,中華民國九十年七月。
[29] T. Semba, T. Hirano, J. Hong, L.S. Fan,“Dual-Stage Servo Controller for HDD Using MEMS Microactuator” , IEEE Transaction on Magnetics, Vol.35 No.5, P.2271~P.2273, September 1999.
[30] M. Kobayashi, T. Yamaguchi, R. Horowitz,“Track Seeking Controller Design for Dual-Stage Actuator in Magnetic Disk Drives ” ,Proceedings of American Control Conference, P.2610~P.2614, June 2000.
[31] T.B. Goh﹐ Z. Li﹐ B.M. Chen﹐T.H. Lee﹐ T. Huang﹐“ Design Implementation of a Hard Disk Drive Servo System Using Robust and Perfect Tracking Approach”﹐Proceedings of the 38th Conference on Decision & Control﹐P.5247~P.5252﹐December 1999﹒
[32] M. Iwashiro, M. Yatsu, H. Suzuki,“Time Optimal Track-to-Track Seek Control by Model Following Deadbeat Control”, IEEE Transaction on Magnetics, Vol.35 No.2, P.904~P.909, March 1999.
[33] I.M. Choi, S.H. Kim, Y.K. Kwak, “ Design and Control of Time Tracking Actuator for Optical Disk ” , IEEE/RSJ International Conference on Intelligent Robots and Systems, P.1878~P.1883, 1999.
[34] B.A. Awabdy, C.S. Wu, D.M. Auslander,“Nanometer Positioning of Linear Motion Stage Under Static Loads”, IEEE/ASME Transaction on Mechatronics, Vol.3 No.2, P.113~P.119, June 1998.
[35] Y.Maeda, A.Nakazawa and Y.Kanata, “Hardware Implementation of a Pulse Density Neural Network Using Simultaneous Perturbation Learning Rule,” Analog Integrated Circuits and Signal Processing, Vol. 18, No. 1, pp.1-10, 1999.
[36] R. Ortega and R. Kelly, “PID self-tuners: Some Theoretical and Practical Aspects,” IEEE Transactions Ind. Electron., Vol. IE-31, pp. 332–338, Nov. 1984.
[37] B. Wittenmark and K. J. Astrom, Simple Self-tuning Controller in Methods and Applications in Adaptive Control. H. Unbehanen, Ed. New York: Springer-Verlag, 1980.
[38] John L. Maryak and Daniel C.Chin, “A Conjecture on Global Optimization Using Gradient-Free Stochastic Approximation,” The Johns Hopkins University, Applied Physics Laboratory Hopkins Road, Laurel, Maryland
[39] P.A.Weaver and R.M.Ehrlich, “The Use of Multirate Notch Filters in Embedded-Servo Disk Drives,” Proceedings of the American Control Conference, pp. 4156-4160, 1993.
[40]Daniel C.Chin, “Comparative Study of Stochastic Gradient-Free Algorithms for System Optimization,” The Johns Hopkins University, Applied Physics Laboratory.
[41] John L. Maryak and Daniel C.Chin, “Global Random Optimization by Simultaneous Perturbation Stochastic Approximation,” The Johns Hopkins University, Applied Physics Laboratory 11100 Johns Hopkins Road, Laurel, Maryland 20723-6099.